
Express: Applications of Dynamically Typed Haskell
Expressions

Rudy Matela
rudy@matela.com.br

Abstract
This paper presents Express, a library for manipulating dy-
namically typed Haskell expressions involving function ap-
plication and variables. Express works as a wrapper around
the Data.Dynamic module and provides additional features
such as: explicit encoding of function applicaion thus de-
layed application between values, support for variable place-
holders and expression matching. This paper shows these
additions make this library useful in generating program
specifications, automated testing and program synthesis.
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1 Introduction
Haskell programmers can use the Data.Dynamic module
when they need to encode dynamically typed values. This
module provides means to: convert any value to a value
of the Dynamic type; perform function application between
Dynamic values; and eventually evaluate a Dynamic value
back into its conventional Haskell type.

In this paper, we extend Data.Dynamic by defining awrap-
per library called Express that handles dynamically typed
expressions with: explicit encoding of function application,
delayed evaluation of applications, support for variables,
pretty-printing and expression matching.
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To encode a heterogeneous list of values using Express,
one can write:

xs :: [Expr]

xs = [ val True

, val (1 :: Int)

, val (2 :: Int)

, value "&&" (&&)

, value "abs" (abs :: Int -> Int) ]

Weuse the val and value functions to convert anymonomor-
phically typed value into a value of the Expr type — val is
used on Show instances and value needs a string represen-
tation (§3). Using evaluate on our heterogeneous list, we
attain the following results:

> map evaluate xs :: [Maybe Int]

[Nothing,Just 1,Just 2,Nothing,Nothing]

So far, Express works exactly as Data.Dynamic. The same
behaviour can be achieved replacing functions by Dynamic
equivalents. Express differs in how it treats applications.

Take for example the following expression that lists appli-
cations between values of the above xs list:

> catMaybes [f $$ x | f <- xs, x <- xs]

[ (True &&) :: Bool -> Bool

, abs 1 :: Int

, abs 2 :: Int ]

Nowwe see a key difference from Data.Dynamic (§2): result-
ing expressions are left unevaluated and are pretty-printed
(§3). The items of the the above result list are of the Expr
type. The above listing is from a real REPL session with the
result formatted to multiple lines.

Express’ representation allows for expressions containing
variables (§4) and supports expressionmatching (§6). Express
also provides a way to deeply encode values as applications
of constructors (§7). This specific collection of features may
seem arbitrary, but they allow Express to be useful in a few
concrete applications:
• generating equalities and test properties (§5);
• generalizing counterexamples of testing (§8);
• synthesizing programs (§9).
The point is not that the Express library improves results
for these applications but rather that it makes the imple-
mentation easier, shorter and more elegant (§10,§11). Using
Express, prototypes for each of the above applications have
less than 70 lines of code! (§13)
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1.1 Contributions
The contributions of this paper are:
1. a simple representation of dynamically typed expressions

involving function application and variables (§3);
2. a collection of methods and techniques for manipulating

this representation, including:
• evaluation and pretty-printing (§3);
• variable replacement (§4);
• expression matching (§6); and
• deep encoding of values (§7);

3. the design of the Express library, which implements these
methods in Haskell (§3, §4, §6, §7);

4. a selection of small case-studies investigating the effec-
tiveness these methods in a few applications (§5, §8, §9)
showing that this specific combination of techniques is
useful in practice;

5. an analysis of how impactful was Express in simplyfying
two full featured libraries (§10);

6. comparative analysis with other possible encodings of
expressions and related libraries (§11).

Despite the Haskell setting of the implementation and case-
studies, we expect similar techniques to be applicable in
other functional programming languages with support for
algebraic data types and dynamically typed values.

2 The Data.Dynamic Library
Before we examine Express in §3, §4, §6 and §7, it is useful
to review the Data.Dynamic library.
The function toDyn converts any monomorphic value to

a Dynamic value:
toDyn :: Typeable a => a -> Dynamic

For example:
dynFalse, dynZero :: Dynamic

dynFalse = toDyn False

dynZero = toDyn (0 :: Int)

The Show instance for Dynamic values simply shows the
type. In a REPL session:
> dynFalse

<<Bool>>

We can evaluate values back into their original types with
fromDynamic. It returns Just a value when the types do
match and Nothing when they do not:
fromDynamic :: Typeable a => Dynamic -> Maybe a

For example:
> fromDynamic dynFalse :: Maybe Bool

Just False

We can perform applications between Dynamic values
with dynApply:
dynApply :: Dynamic -> Dynamic -> Maybe Dynamic

Using Dynamic, we can replicate the first example given
in the introduction. A heterogeneous list is declared like so:

xs :: [Dynamic]

xs = [ toDyn True

, toDyn (1 :: Int)

, toDyn (2 :: Int)

, toDyn (&&)

, toDyn (abs :: Int -> Int) ]

It can have its values evaluated at a given type:

> map fromDynamic xs :: [Maybe Int]

[Nothing,Just 1,Just 2,Nothing,Nothing]

Results are less interesting when we list applications be-
tween values of our heterogeneous list:

> catMaybes [dynApply f x | f <- xs, x <- xs]

[<<Bool -> Bool>>, <<Int>>, <<Int>>]

As opposed to what we saw in §1, we now only see the types.
In Data.Dynamic values are opaque unless evaluated at their
correct types.

3 Encoding Expressions
Now we begin examining Express and its basic building
blocks to encode Haskell expressions.

As stated in the introduction (§1), we encode values in the
Expr type. It is declared like so:

data Expr = Value String Dynamic

| Expr :$ Expr

Atomic Values are stored as a String representation paired
with a Dynamic value. We allow applications between ex-
pressions. Types of expressions are stored internally in the
Dynamic value. Type-safety is provided by means of an ap-
plication function ($$) defined later.

The smart-constructor value takes a string representation
and an object and returns an Expr:

value :: Typeable a => String -> a -> Expr

value s x = Value s (toDyn x)

For example:

plus :: Expr

plus = value "+" ((+) :: Int -> Int -> Int)

Using value, we implement val that takes a Showable
object and returns an Expr:

val :: (Typeable a, Show a) => a -> Expr

val x = value (show x) x

For example:

false, zero, one :: Expr

false = val False

zero = val (0 :: Int)

one = val (1 :: Int)
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The Show instance of Exprs pretty-prints them1:

> plus :$ one

(1 +) :: Int -> Int

> plus :$ one :$ zero

1 + 0 :: Int

Exprs can be evaluated by the following function:

evaluate :: Typeable a => Expr -> Maybe a

evaluate e = toDynamic e >>= fromDynamic

where

toDynamic (Value _ x) = Just x

toDynamic (e1 :$ e2) = do

v1 <- toDynamic e1

v2 <- toDynamic e2

dynApply v1 v2

For example:

> evaluate (plus :$ one :$ zero) :: Maybe Int

Just 1

> evaluate false :: Maybe Bool

Just False

For convenience, Express also exports eval which takes
a default value and evl which raises an error when the
underlying value is not of the right type.

The :$ constructor permits ill-typed expressions:

> plus :$ one :$ false

1 + False :: ill-typed

To avoid ill-typed expressions, we should use $$:

($$) :: Expr -> Expr -> Maybe Expr

e1 $$ e2 | isIllTyped e = Nothing

| otherwise = Just e

where e = e1 :$ e2

The isIllTyped function is implemented using functions
from Data.Dynamic and Data.Typeable. Its definition is
omitted here but it is straightforward. The function $$ re-
turns Nothing when the types do not match:

> plus $$ false

Nothing

When the types do match, $$ returns Just the resulting
application:

> plus $$ one

Just ((1 +) :: Int -> Int)

The function $$ is not only a convenience, but forms a core
part of howwe enumerate expressions later on in an example
application (§5.1).
1Applications are pretty-printed as infix when the string-encoded function
name starts with an operator character as defined in the Haskell Report
[13, 20].

Though Expr values are dynamically typed at runtime,
their types are always there and can be queried by the func-
tion typ :: Expr -> TypeRep:

> typ (plus :$ one)

Int -> Int

> typ (plus :$ one :$ zero)

Int

The Expr type is an instance of Eq and Ord. In both in-
stances, Expr values are compared by their structure, string
representation and type:

> plus :$ zero :$ one == plus :$ zero :$ one

True

> plus :$ zero :$ one == plus :$ one :$ zero

False

Express does not provide any direct way to encode lamb-
das, variable capturing or (case) pattern matching in its Expr
type. Even with these limitations, it is effective in the exam-
ple applications we explore later on in §5, §8, §9 and §10.

4 Encoding Variables
Because Express allows us to encode expressions and not only
atomic values (as in Data.Dynamic), we can encode dynam-
ically typed variables inside Exprs. We represent variables
like so:

var :: Typeable a => String -> a -> Expr

var s a = value ('_':s) (err `asTypeOf` a)

where err = error "..."

Variables are atomic values whose string representation
starts with an underscore and whose Dynamic value is an
error value2 that is present to carry the variable type.
Here is how to encode two variables as Exprs:

xx, yy :: Expr

xx = var "x" (undefined :: Int)

yy = var "y" (undefined :: Int)

They can be placed inside expressions and are pretty printed:

> xx

x :: Int

> plus :$ xx :$ one

x + 1 :: Int

Variables would not be useful if we could not replace them
with other values or subexpressions, so Express provides the
operator //- to replace them:

(//-) :: Expr -> [(Expr,Expr)] -> Expr

2Choices, choices... Here we could have chosen to represent variables with
an additional constructor on the Expr type: Var String Typerep. The
implementation presented here makes matters simpler in terms of evaluat-
ing, matching and comparing Exprs. The argument of var could have also
been of the Proxy type, the version here using a simple undefined proxy
was chosen for backwards compatibility.
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Though this operator is able to replace any terminal atomic
Values, it is most useful when replacing variables. For ex-
ample:
> plus :$ xx :$ one //- [(xx,zero)]

0 + 1 :: Int

> plus :$ yy :$ xx //- [(xx,zero), (yy,one)]

1 + 0 :: Int

4.1 Typed Holes
We also allow for typed holes to denote incomplete expres-
sions. We represent them as variables without names:
hole :: Typeable a => a -> Expr

hole a = var "" (err `asTypeOf` a)

Here is how to declare a hole of the Int type:
i_ :: Expr

i_ = hole (undefined :: Int)

Holes are pretty-printed as underscores:
> plus :$ i_ :$ one

_ + 1 :: Int

Given an expression with holes, Express has a function
that lists canonical variations of variable assignments:
> canonicalVariations $ plus :$ i_ :$ i_

[ x + y :: Int, x + x :: Int ]

There are two ways to assign two variable places canonically:
with two different variables or twice with the same, other
variations are non-canonical. For three holes, there are five
combinations:

x+(y+z) x+(y+x) x+(y+y) x+(x+y) x+(x+x)

Canonical variations will be useful later on in a couple of
example applications (§5 and §8).
We finish the description of the Express library for now.

The next section (§5) describes a proof-of-concept applica-
tion. We will take a look at other functionalities of Express
again in §6 and §7.

5 𝜇-Speculate: Conjecturing Equations
In order to demonstrate how Express is useful, this section
examines a simple example application called 𝜇-Speculate
(micro Speculate). This application is capable of conjecturing
equations about a collection of primitive definitions based
on the results of testing. 𝜇-Speculate is a simplified recon-
struction of the full-featured Speculate tool [1, 4], discussed
later in §10.
By enumerating (§5.1) then equating (§5.2), we are able

to list equations involving ground expressions (§5.3). By
replacing variables with enumerated test values (§5.4), we are
able to list equations involving variables (§5.5). Thenwe filter
of redundant equations to arrive at our final implementation
(§5.6).

5.1 Enumerating Expressions
By leveraging the application smart-constructor $$ (§3) and
some enumerative functionality from LeanCheck [1] we can
implement a function with the following type signature:

expressionsT :: [Expr] -> [[Expr]]

Given a set of primitive expressions, this function enumer-
ates all possible type-correct expressions both in size-order
and grouped by size. At any point in the enumeration, new
expressions are built from existing type correct expressions
using $$. Expressions that are not type-correct are discarded
as soon as they are found. The result is a usually infinite list of
finite lists. Here is an example application of expressionsT:

> expressionsT [ var "x" (undefined :: Int)

> , val (0::Int)

> , val (1::Int)

> , value "+" ((+) :: Int -> ...)

> , value "*" ((*) :: Int -> ...) ]

[ [ x :: Int

, 0 :: Int

, 1 :: Int

, (+) :: Int -> Int -> Int

, (*) :: Int -> Int -> Int

]

, [ (x +) :: Int -> Int

, (0 +) :: Int -> Int

, (1 +) :: Int -> Int

, (x *) :: Int -> Int

, (0 *) :: Int -> Int

, (1 *) :: Int -> Int

]

, [ x + x :: Int

, x + 0 :: Int

, x + 1 :: Int

, ... {- 15 Exprs omitted here -}

]

, [ ((x + x) +) :: Int -> Int

, ((x + 0) +) :: Int -> Int

, ... {- 34 Exprs omitted here -}

]

, ... {- infinite list -}

]

Expressions above are shown as they would when pretty-
printed by the show function.
Using expressionsT, we can implement a function that

enumerates expressions up to an arbitrary size limit of 5 by:

candidateExprsFrom :: [Expr] -> [Expr]

candidateExprsFrom = concat . take 5

. expressionsT
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5.2 Equating Expressions
Consider the following function -==-which given two Exprs
returns the encoded application of == between them for a
hardcoded selection of types:

(-==-) :: Expr -> Expr -> Expr

ex -==- ey = head $

[eqn | eq <- eqs

, let eqn = eq :$ ex :$ ey

, isWellTyped eqn] ++ [val False]

where

eqs = [ value "==" ((==)::Int->Int->Bool)

, value "==" ((==)::Bool->Bool->Bool)

, value "==" ((==)::[Int]->[Int]->Bool)

, value "==" ((==)::[Bool]->...) ]

We default to a False value encoded as an Expr in case we
do not find the appropriately typed ==.
Here is an example application of -==-:

> (plus :$ xx :$ zero) -==- one

x + 0 == 1 :: Bool

Using -==- and candidateExprsFrom we can enumerate
candidate equations between expressions involving a list of
primitives:

candidateEquationsFrom :: [Expr] -> [Expr]

candidateEquationsFrom es' =

[e1 -==- e2 | e1 <- es, e2 <- es, e1 >= e2]

where es = candidateExprsFrom es'

The use of >= above avoids some redundant equations —
equality is commutative.

5.3 Listing Equations between Ground Expressions
Now we can implement the first version of a function that
lists equations about given primitives:

speculateAbout :: [Expr] -> [Expr]

speculateAbout = filter (eval False)

. candidateEquationsFrom

This initial version only works when primitives do not in-
clude variables, like so:

> speculateAbout [ val ([] :: [Int])

> , value ":" ((:) :: Int->...)

> , value "++" ((++)::[Int]...) ]

[ [] == [] :: Bool

, [] ++ [] == [] :: Bool

, [] ++ [] == [] ++ [] :: Bool

, ... {- 7 equations omitted -}

]

Not very interesting or useful output so far.

5.4 Listing Ground Expressions
In order to get more interesting and useful output, we need
to allow for variables in our equations, We define a function
to list ground expressions, i.e., expressions whose variables
have been replaced by ground values:

grounds :: Expr -> [Expr]

The resulting list may be infinite. The definition of grounds
is omitted here but uses //- (§4) and enumerated values from
LeanCheck3. Here are a couple of example applications:

> grounds $ value "not" not :$

> var "p" (undefined :: Bool)

[not False :: Bool, not True :: Bool]

> grounds $ plus :$ xx :$ yy

[ 0 + 0 :: Int, 0 + 1 :: Int, 1 + 0 :: Int

, 0 + (-1) :: Int, 1 + 1 :: Int, ... ]

Using grounds we can implement isTrue, that checks
if a boolean expression is true for an arbitrary value of 60
assignments of variables:

isTrue :: Expr -> Bool

isTrue = all (eval False) . take 60 . grounds

5.5 Equations Involving Variables
We now refine our speculateAbout function:

speculateAbout = discardLater isInstanceOf

. filter isTrue

. candidateEquationsFrom

We allow for variables by using isTrue and we discard
later4 equations that are instances of earlier equations using
isInstanceOf provided by Express (§6).

We can now include a variable xs in the argument list of
the speculateAbout function:

> speculateAbout [ var "xs" (undefined :: [Int])

> , val ([] :: [Int])

> , value ":" ((:) :: Int -> ...)

> , value "++" ((++) :: ...) ]

[ xs == xs :: Bool

, xs ++ [] == xs :: Bool

, [] ++ xs == xs :: Bool

, [] ++ xs == xs ++ [] :: Bool

, xs ++ (xs ++ []) == xs ++ xs :: Bool

, ... {- 113 equations omitted -} ]

We start to see a few interesting equations.

3We use LeanCheck [1] but other property-based testing tools would work
as well: QuickCheck [6–8], SmallCheck [23, 24], Feat [10, 11], or others. The
function grounds works with the same selection of types as -==-.
4The function discardLater is similar to nubBy but it does not require the
given predicate to be an equivalence.
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5.6 Non-Redundant Equations
Consider the following idea [26]: we can begin by testing
the one-variable instance of an equation first and only if it
is true we test the multiple-variable instance of an equation.
This works because for an expression of boolean result with
multiple variables (of each type) to be true, its instance where
there is only one variable must be true as well. In symbolic
terms:

∀𝑥,𝑦, 𝑧... 𝑝 (𝑥,𝑦, 𝑧, ...) ⇒ ∀𝑥 . 𝑝 (𝑥, 𝑥, 𝑥, ...)
¬∀𝑥 𝑝 (𝑥, 𝑥, 𝑥, ...) ⇒ ¬∀𝑥,𝑦, 𝑧... 𝑝 (𝑥,𝑦, 𝑧, ...)

Based on the above observation, we now implement the
final version of our speculateAbout function:

speculateAbout :: [Expr] -> [Expr]

speculateAbout =

discardLater canBeSimplifiedBy

. discardLater isInstanceOf

. concatMap trueCanonicalVariations

. discardLater

(\e1 e2 -> isntIdentity e2

&& e2 `isInstanceOf` e1)

. sort

. filter isTrue

. candidateEquationsFrom

where

e1 `canBeSimplifiedBy` e2 =

isRule e2 && e1 `hasInstanceOf` lhs e2

trueCanonicalVariations =

discardLater isInstanceOf

. filter isTrue

. filter isntIdentity

. canonicalVariations

Now, to conjecture equations about [], : and ++, we do:

speculateAbout

[ hole (undefined :: Int)

, hole (undefined :: [Int])

, val ([] :: [Int])

, value ":" ((:) :: Int -> ...)

, value "++" ((++) :: [Int] -> ...) ]

Above we provide two holes indicating that we want vari-
ables of their type to appear in equations. The above call
returns the following equations:

xs ++ [] == xs

[] ++ xs == xs

[x] ++ xs == x:xs

(x:xs) ++ ys == x:(xs ++ ys)

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

in less than 1s. Notably the 4th equation is a possible recur-
sive step in an implementation of ++.

Here is what 𝜇-Speculate says about 0, + and abs:

abs 0 == 0

x + 0 == x

0 + x == x

abs (abs x) == abs x

x + y == y + x

abs (x + y) == abs (y + x)

abs (x + abs x) == x + abs x

abs (abs x + x) == x + abs x

abs x + abs x == abs (x + x)

(x + y) + z == x + (y + z)

along with 14 redundant equations omitted here.
Equations produced by 𝜇-Speculate are just conjectures.

They were not proven to be true, just tested to be true.
There are limitations to 𝜇-Speculate:

• there are still quite a few redundant equations;
• number of tests and maximum equation size not config-
urable;

• the supported types are hardcoded in -==- and grounds;
• performance.
𝜇-Speculate is a simplified reconstruction of the full-featured
Speculate tool [1, 4] that is not constrained by the above
limitations. The generation of equations based on the results
of testing was originally described in an ealier paper about
the QuickSpec tool [9, 26].
The point of 𝜇-Speculate is not to be the best equational

generator but to show that Express works well as the frame-
work on which to build equational generators. The whole
implementation is only 67 lines of code. The full code of
𝜇-Speculate including omitted functions is available in the
Express package (§13).

6 Matching Expressions
In the previous section (§5) we used isInstanceOf to discard
redundant equations. This section discusses this functional-
ity in more detail.

Express provides a function match that returns a structural
match between two expressions. When the match is possible,
this function returns a list of assignments of variables of the
second expression to subexpressions of the first:

match :: Expr -> Expr -> Maybe [(Expr,Expr)]

For example, the expression encoding 0 + 1 matches the
expression 𝑥 + 𝑦 by assigning 𝑥 to 0 and 𝑦 to 1:

> match (plus :$ zero :$ one) (plus :$ xx :$ yy)

Just [(y :: Int,1 :: Int), (x :: Int,0 :: Int)]

On the other hand, the expression 0 + 1 does not match the
expression 𝑥 + 𝑥 as it would require assigning the variable 𝑥
two different values:

> match (plus :$ zero :$ one) (plus :$ xx :$ xx)

Nothing
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Matches are structural: applications have to happen in the
same place; types and string representations of correspond-
ing terminal values must be equal; and types of variables
must match corresponding sub-expressions. Consequently,
an expression encoding (0 + 1) + 2 matches both (𝑥 + 𝑦) + 𝑧

and 𝑥 + 𝑦 but not 𝑥 + (𝑦 + 𝑧).
The implementation of match is omitted here but it is

straightforward. It maintains a list of assignments from vari-
ables to values and this list is updated as both expressions
are traversed.
Using match, the implementation of the isInstanceOf

function is trivial:

isInstanceOf :: Expr -> Expr -> Bool

e1 `isInstanceOf` e2 = isJust $ match e1 e2

When there is a match this function returns True, otherwise
it returns False.

The functions match and isInstanceOf are not only use-
ful to discard redundant equations (§5). but can be applied
to discard redundant expressions at the moment of enumer-
ation or even to perform rewrites (§10).

7 Deeply Encoding Values as Applications
of Constructors

Now, we examine another feature of Express, deep encoding
of values. This will be useful in the next example application
(§8).

The function val encodes values atomically, e.g., the fol-
lowing two are equivalent:

val [1,2,3 :: Int]

value "[1,2,3]" [1,2,3 :: Int]

To deeply encode values we define a typeclass of values
that can be expressed as applications of constructors:

class Typeable a => Express a where

expr :: a -> Expr

Atomic values are still encoded atomically:

instance Express Bool where expr = val

instance Express Int where expr = val

instance Express Char where expr = val

A deeply encoded pair is the pair constructor represented
as an Expr applied to the deep encoding of the two elements:

instance (Express a, Express b)

=> Express (a,b) where

expr (x,y) = value "," ((,) ->>: (x,y))

:$ expr x

:$ expr y

Above, the operator ->>: is a type restricted version of the
const function that binds the result type of the pair con-
structor (,) to match x and y.

A deeply encoded list is either the Expr representation of
the atomic nil [] value or the list constructor : represented
as an Expr applied to the deep encoding of the head and tail.

instance Express a => Express [a] where

expr xs = case xs of

[] -> val xs

(y:ys) -> value ":" ((:) ->>: xs)

:$ expr y

:$ expr ys

A similar pattern goes for other types. Express provides
instances for most standard Haskell types and a facility to
automatically derive instances for user-defined data types
using Template Haskell [25]. Writing:

deriveExpress ''UserDefinedDataType

is enough to derive an Express instance for most user de-
fined algebraic data types.

8 𝜇-Extrapolate: Generalizing
Counterexamples

To further demonstrate the usefulness of Express, this section
describes a short example application called 𝜇-Extrapolate
(micro Extrapolate). This application does property-based
testing and aside from reporting a fully-defined counterexam-
ple, it reports a generalization. 𝜇-Extrapolate is a simplified
reconstruction of the full-featured Extrapolate tool [1, 3].
Given a maximum number of tests and a property, the

following counterExamples function returns an empty list
when when tests pass or a list of counterexamples deeply
encoded as Exprs when tests fail.

counterExamples :: (Listable a, Express a)

=> Int -> (a -> Bool) -> [Expr]

counterExamples max prop =

[expr x | x <- take max list, not (prop x)]

We can also build a version that returns Just the first
counterexample if any is found or Nothing otherwise:

counterExample m =

listToMaybe . counterExamples m

Here are some simple example applications:

> counterExample 100 $ \(x,y) -> x + y == y + x

Nothing

> counterExample 100 $ \x -> x == x + x

Just (1 :: Integer)

> counterExample 100 $

> \xs -> nub xs == (xs :: [Int])

Just ([0,0] :: [Int])

Addition is commutative; and doubling a number or nubbing
a list are not identities.
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To compute candidate generalizations from a given coun-
terexample deeply encoded as an Expr, we use the following:

candidateGeneralizations :: Expr -> [Expr]

candidateGeneralizations =

concatMap canonicalVariations . g

where

g e@(e1 :$ e2) =

[holeAsTypeOf e | isListable e] ++

[g1 :$ g2 | g1 <- g e1, g2 <- g e2] ++

map (:$ e2) (g e1) ++

map (e1 :$) (g e2)

g e | isVar e = []

| otherwise = [ holeAsTypeOf e

| isListable e ]

Above, the isListable function returns whether we can
enumerate variables of the given variable type with grounds.

Our candidate generalizations are listed in non-increasing
order of generality. Candidate generalizations for [0] are:

> candidateGeneralizations $ expr [0::Int]

[ xs :: [Int]

, x:xs :: [Int]

, [x] :: [Int]

, 0:xs :: [Int] ]

The candidate generalizations for [0,0] are:

xs [x,y] 0:xs

x:xs [x,x] 0:x:xs

x:y:xs x:0:xs [0,x]

x:x:xs [x,0] 0:0:xs

For a given maximum number of tests, property and coun-
terexample, the following function returns a counterexample
along with generalizations if any is found. Generalizations
are selected when they fail for all tests!

counterExampleAndGeneralizations

:: (Listable a, Express a)

=> Int -> (a -> Bool) -> [Expr]

counterExampleAndGeneralizations maxTests prop =

case counterExamples maxTests prop of

[] -> []

(ce:_) -> ce : gens ce

where

gens ce = discardLater isInstanceOf

[ g | g <- candidateGeneralizations ce

, all (not . prop . evl)

(take maxTests $ grounds g) ]

The previously defined function grounds is recycled from
our previous example application (§5). Above, evl (§3) con-
verts the enumrated ground Expr back into the argument-
type of the property.

By pattern matching on the result of the above function
it is straightforward to define a check function. It tests a
property for 500 arguments and reports a counterexample
and its generalizations when any is found:

check :: (Listable a, Express a)

=> (a -> Bool) -> IO ()

Now we can find counterexamples and their generaliza-
tions. See:

> check $ \xs -> sort (sort xs)

> == sort (xs :: [Int])

+++ Tests passed.

The above property is correct, sort is idempotent.

> check $ \xs -> length (nub xs)

> == length (xs :: [Int])

*** Falsified, counterexample: [0,0]

generalization: x:x:xs

The above property is incorrect for [0,0] and any coun-
terexample of the form x:x:xs: [1,1], [2,2], [0,0,1],
etc. In general, the property is incorrect whenever there are
repeated elements in the given list. The generalized coun-
terexample hints at this.

Here are a couple more simple examples:

> check $ \x -> x == x + (1 :: Int)

*** Falsified, counterexample: 0

generalization: x

The above property fails for any argument value.

> check $ \(x,y) -> x /= (y :: Int)

*** Falsified, counterexample: (0,0)

generalization: (x,x)

The above property fails when the argument numbers are
repeated.
The produced counterexamples are known to falsify the

property, however their generalizations are conjectures based
on the results of testing.

𝜇-Extrapolate is a simplified reconstruction of the full-
featured Extrapolate tool [1, 3] which also supports condi-
tional generalizations. The original paper about Extrapolate
discusses how generalizations can help inform programmers
about the actual source of a bug. The idea of generalizing
counterexamples of property testing in Haskell was pre-
sented in an earlier paper [22] about the SmartCheck tool.

The point of 𝜇-Extrapolate is not to be the best counterex-
ample generalizer but to show that Express works well as
the framework on which to build libraries able to generalize
counterexamples. The whole implementation is only 51 lines
of code. The full code of 𝜇-Extrapolate including omitted
functions is available in the Express package (§13).
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9 𝜇-Conjure: Program Synthesis
In this section we use Express to implement our last example
application called 𝜇-Conjure (micro Conjure). It is capable of
synthesizing (or conjuring) Haskell functions out of partial
definitions.

We start with a partial definition:

square :: Int -> Int

square 1 = 1

square 2 = 4

square 3 = 9

square 4 = 16

and a list of primitives that are allowed in the synthesized
definition:

primitives :: [Expr]

primitives = [ val (0 :: Int)

, val (1 :: Int)

, value "+" ((+) :: Int -> ...)

, value "*" ((*) :: Int -> ...) ]

Then we declare a function that, given a name and a func-
tion, builds an application with variables encoded as an Expr:

application :: Typeable f

=> String -> f -> [Expr] -> Expr

For example:

> application "square" square primitives

square x :: Int

> application "&&" (&&) primitives

p && q :: Bool

These applications will serve as the left hand side of our syn-
thesized definition. Here we omit the code of application
but it is straightforward to build using combinators from the
Express library.
Now we can define a function that lists matching imple-

mentations. Given a name, a function and a list of primitive
values, conjureImpls returns a list of matching implemen-
tations using the given primitive values. If no matching im-
plementation is found, conjureImpls returns an empty list.

conjureImpls :: Typeable f

=> String -> f -> [Expr] -> [Expr]

conjureImpls nm f ps =

[ appn -==- e

| e <- candidateExprsFrom (exs ++ ps)

, isTrue (appn -==- e) ]

where

appn = application nm f ps

(ef:exs) = unfoldApp appn

isTrue e = all (errorToFalse . eval False)

. map (e //-)

$ definedBinds appn

The conjureImpls function first builds a full application of
the function (appn). Then, for all candidate expressions it
can generate including primitives and variables in the appli-
cation, it returns equations between the full application and
the candidate (appn -==- e) whenever they are is tested to
be true (isTrue). The truth check here is only for the defined
assignments (definedBinds) of the argument function.
The function unfoldApp is available from the Express li-

brary and unfolds an application of Exprs into a list. The
definedBinds function was created for 𝜇-Conjure and enu-
merates assignments for which the given application is de-
fined.
For convenience, it is nice to define a function conjure

that instead of returning a list of Exprs, simply prints the
first matching implementation. We can finally synthesize
our square function:

> conjure "square" square primitives

square :: Int -> Int

square x = x * x

Here is a partial definition of a factorial function:

factorial :: Int -> Int

factorial 1 = 1

factorial 2 = 2

factorial 3 = 6

factorial 4 = 24

By including foldr and enumFromTo in the primitives, 𝜇-
Conjure is able to produce the following:

factorial :: Int -> Int

factorial x = foldr (*) 1 (enumFromTo 1 x)

𝜇-Conjure also works for list-processing functions. given
the following partial definition of append (++):

(+++) :: [Int] -> [Int] -> [Int]

[x] +++ [y] = [x,y]

[x,y] +++ [z,w] = [x,y,z,w]

A call to conjure including the list constructor and foldr in
the primitives argument is able to produce a correct append
definition:

(+++) :: [Int] -> [Int] -> [Int]

xs +++ ys = foldr (:) ys xs

𝜇-Conjure has some limitations:
• no recursion is allowed;
• supported types are once again hardcoded;
• brute-force search without pruning;
• runtime is reasonable only for less than a dozen primitives
and up to functions with 7 applications. This means several
relatively simple functions are out of reach.

A full featured version that addresses these limitations is left
as future work (§12).
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Table 1. Number of lines of code in Speculate and Extrap-
olate before and after the switch to using Express. Figures
exclude blank lines and comments.

tool/lib #-lines
Speculate v0.3.5 3181 before Express
Speculate v0.4.0 2570 after Express, −20%
Speculate v0.4.10 2560 latest version
Extrapolate v0.3.3 1359 before Express
Extrapolate v0.4.0 958 after Express, −30%
Extrapolate v0.4.6 947 latest version

𝜇-Conjure has much poorer performance than Magic-
Haskeller [14–17] or Igor II [12], two other tools that are
able to generate Haskell functions. However, the point of
𝜇-Conjure is not to be an efficient program generator but
to show that Express can work as a framework on which
to build libraries able that synthesize programs. The whole
implementation of Express is only 64 lines of code, whereas
MagicHaskeller is over 9000! Whether our approach here
could scale up to be on par with MH is an open question
(§12). The full code of 𝜇-Conjure including omitted functions
is available in the Express package (§13).

10 Beyond Simple Proofs of Concept
In §5, §8 and §9 we see Express applied in three simple
proofs of concept. How does it fare when applied in the
implementation of full featured libraries and programs?
Express was born as an internal module of the Speculate

tool [4]. This module was used later on the Extrapolate tool
[3]. From this usefulness in two different applications came
the idea of providing Express as a standalone library.

The original Speculate and Extrapolate libraries have since
been changed to explicitly use the Express library as a depen-
dency. Though this is subjective, the use of Express did make
the code more elegant and organized. The earlier libraries are
now easier to maintain, as one does not need to worry about
the lower level machinery. As a more objective measure, the
number of lines of code in the implementation of Speculate
and Extrapolate have been significantly reduced by 20% and
30% respectively (Table 1).
In their respective original papers, Speculate and Extrap-

olate were demonstrated to work in real applications with
reasonable performance. After the change to use Express,
Speculate and Extrapolate had no decrease in performance.
Most of their built-in benchmarks had no increase in run-
time from the version without Express compared to the ver-
sion that uses Express. This is shown in Table 2. Since there
were unrelated changes in the same development period, we
cannot claim that Express is the central reason for runtime
change in any benchmark, only that the tools still work with
reasonable runtime after the change.

Table 2. Runtimes for accompanying benchmarks of Specu-
late and Extrapolate comparing old versions that did not use
Express with new versions that do use Express.

tool / benchmark old new
Speculate v0.3.5 v0.4.0

insertsort 6.3s 7.5s
list 4.0s 2.5s
plus-abs 3.9s 3.5s
binarytree 2.2s 1.7s
digraphs 1.4s 1.5s
regexes 8.5s 7.6s

Extrapolate v0.3.3 v0.4.0
sorting 23.6s 23.8s
calculator 0.4s 0.4s
parser 6.6s 6.3s
heap 2.9s 2.7s
int 2.6s 2.8s
list 7.3s 6.8s
word 8.3s 7.9s

Benchmarks in Table 2 were compiled with GHC version
8.10.4 and -O2 flag under Linux on a PC with a 2.2Ghz 4-core
processor and 16GB of RAM. The number of cores here is of
less relevance as both Speculate and Extrapolate run on a sin-
gle thread in a single process. The given figures are averages
of 60 runs rounded to one decimal place. Default Extrapolate
settings changed between versions and were normalized to
the ones of v0.4.0. Most benchmarks are described in the
original papers [3, 4]. Benchmark sources are available in
each tool’s respective packages.
The 𝜇-Speculate (§5) and 𝜇-Extrapolate (§8) examples

are simplifications and reconstructions of the original full-
featured libraries. How the lower-level machinery worked
was not detailed in the original papers and was left out as
implementation detail – there algorithms and methods are
described in a higher level, here we examine the lower-level
machinery.
In Speculate there is a more efficient implementation of

expression enumeration (§5.1): there we prune redundant
expressions during enumeration using discovered equations
themselves by treating them as term-rewriting rules. This
is done with the help of the match and isInstanceOf func-
tions described in §6. The higher level algorithm that does
this is described in the original paper about Speculate [4].
This algorithm is in turn based on the original algorithm of
QuickSpec [9, 26]. In both Speculate and Extrapolate, there
are ways to collect and maintain lists of typeclass instances
for Expr values, solving the issue of hardcoded types in
grounds and -==-.
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Table 3. Number of constructors in different representations of Haskell expressions from a few packages.

package version module datatype #-cons
express v0.1.10 Data.Express Expr 2
extrapolate v0.4.4 Data.Express Expr 2 (uses Express)
speculate v0.4.6 Data.Express Expr 2 (uses Express)
speculate (old) v0.3.5 Test.Speculate.Expr.Core Expr 3
quickspec v2.1.5 QuickSpec.Internal.Term Term 3
template-haskell v2.17.0.0 Language.Haskell.TH Exp 29
haskell-src v1.0.3.1 Language.Haskell.Syntax HsExp 27
haskell-src-exts v1.23.1 Language.Haskell.Exts.Syntax Exp 56
MagicHaskeller v0.9.6.7 MagicHaskeller.CoreLang CoreExpr 21
Igor II v0.8.0 Syntax.Expressions TExp 8

Table 4. Presence of features in three libraries that encode
Haskell expressions:  =yes; #=no.

Ex
pr
es
s

Te
m
pl
at
e
H
as
ke
ll

ha
sk
el
l-s
rc
(-e

xt
s)

“eval-style” evaluation  # #
expr-matching  # #
compile time splicing #  #
direct encoding of:
– function application    
– variables    
– lambdas #   
– case pattern-matching #   

11 Other Representations of Haskell
Expressions

In Express we took a minimalist approach to encode Haskell
expressions. We only used two constructors!
There are other packages that provide types that encode

Haskell expressions. Some packages take a radically differ-
ent approach of using dozens of constructors as they are
intended for different applications: Template Haskell [25],
haskell-src [21], haskell-src-exts [5] andMagicHaskeller [14–
17] have expression types with 29, 27, 56 and 21 constructors
respectively including explicit lambda-, case-, if- and let- ex-
pressions (Table 3). These representations are more expres-
sive but they can be harder to use. A complete pattern match
on Exp from the haskell-src-exts package needs at least 56
lines of code! Equivalent implementations of Express’ eval,
evaluate, match and isInstanceOfwould be more lengthy
just by the sheer number of cases to be handled. However,
comparing the number of constructors is not entirely fair as
these packages have inherently different goals thus different
sets of features (Table 4).

Express’ representation comes from the former internal
representation of Speculate and has a similar number of con-
structors. QuickSpec [9, 26] is another tool that represents
its internal expressions with a few constructors, only 3 (Ta-
ble 3). QuickSpec’s representation was constructed with the
purpose of conjecturing equations, Express’ is intended to
be more general purpose.
The example applications show that one can produce in-

teresting results with a small number of constructors (§5,
§8, §9). Specifically for generation of equations and gener-
alization of counterexamples, existing work on QuickSpec,
Speculate and Extrapolate use a small number of construc-
tors to represent expressions [1, 3, 4, 9, 26]. On the other
hand, for program synthesis, representing with several con-
structors seems to be the norm [12, 14–17]. What the exact
sweet-spot is in each application is an open ended question.
A direct and fair comparison between Template Haskell

and Express is difficult as they have inherently different
goals and features (Table 4). TH’s Exp type is intended to be
spliced in programs during compile time whereas Express’
Exp type cannot be spliced directly. One can easily automate
the generation of boilerplate code with TH but not with
Express. Express itself uses TH to automate the generation of
Express instances (§7). Conversely, Express provides readily
available functions evaluate and eval that take an Expr
and returns a regular Haskell value whereas TH does not.5
The same can be said for variable substitution with //- or
expression matching with match and isInstanceOf: there
are no readily available equivalents in TH and to construct
equivalents would require handling a significant portion of
the 29 constructors in its Exp type. Again, different goals,
different features.

5TH Exp values are of course eventually evaluated at a later time. Splicing
happens at compile time but evaluation happens at runtime. We make no
claim that evaluating TH’s Exps as soon as they are constructed is impossible,
but one would have to take into account the GHC stage restriction: Exps
that are spliced must be imported and cannot defined locally.
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12 Conclusions
This paper presented the Express library (§3, §4) that facili-
tates manipulating Haskell expressions involving function
application and variables. To show that Express is useful, it
was applied in three short example applications: 𝜇-Speculate
(§5); 𝜇-Extrapolate (§8); and 𝜇-Conjure (§9). The point of Ex-
press is to ease implementation of systems that manipulate
Haskell expressions and the example applications presented
here aremeant to show this.Wemake no claim that these par-
ticular implementations are the best tools in their domains.
Disregarding blank lines and comments, these applications
were implemented in 67, 51 and 66 lines of code respectively.

This paper discussed the use of Express in actual full-
featured libraries (§10) Speculate and Extrapolate. Newer
versions were changed to use Express instead of original
internal representations. Subjectively, they are now easier
to maintain. Objectively, they now have fewer lines of code.
Performance was not affected negatively.
In this paper we only examine a few functions in the

Express library. The complete library has over a hundred
functions for building, evaluating, comparing, folding, canon-
icalizing and matching Exprs. It is well documented, with
over 95% Haddock documentation coverage [19] in most of
the cases including small examples. Express totals around
2500 lines of code.

Future Work. We are working on an improved version
of 𝜇-Conjure (§9) called Conjure to hopefully be discussed in
a future paper. Likewise as in previous work, the description
of Express will be left out as implementation detail though
it is the machinery that enables Conjure to work.
We hope Express can be applied in other areas: perhaps

to mutation testing in Haskell [2, 10, 18]; figuring specifica-
tions about concurrent functions [27, 28]; or even another
application not considered here.

13 Availability
Express is feely available with a BSD3-style license from:
• https://hackage.haskell.org/package/express
• https://github.com/rudymatela/express

The above links include the full sources of the 𝜇-∗ example
applications. This paper describes Express version 1.0.0.
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