
Speculate: Discovering Conditional Equations and Inequalities
about Black-Box Functions by Reasoning from Test Results

Rudy Matela Braquehais
University of York, UK
rudy@matela.com.br

Colin Runciman
University of York, UK

colin.runciman@york.ac.uk

Abstract
This paper presents Speculate, a tool that automatically conjec-
tures laws involving conditional equations and inequalities about
Haskell functions. Speculate enumerates expressions involving a
given collection of Haskell functions, testing to separate those ex-
pressions into apparent equivalence classes. Expressions in the
same equivalence class are used to conjecture equations. Repre-
sentative expressions of different equivalence classes are used to
conjecture conditional equations and inequalities. Speculate uses
lightweight equational reasoning based on term rewriting to discard
redundant laws and to avoid needless testing. Several applications
demonstrate the effectiveness of Speculate.

CCS Concepts • Software and its engineering → Software
testing and debugging; • Theory of computation → Program
specifications;

Keywords formal specification, property-based testing, Haskell.

ACM Reference Format:
Rudy Matela Braquehais and Colin Runciman. 2017. Speculate: Discovering
Conditional Equations and Inequalities about Black-Box Functions by Rea-
soning from Test Results. In Proceedings of 10th ACM SIGPLAN International
Haskell Symposium, Oxford, UK, September 7-8, 2017 (Haskell’17), 12 pages.
https://doi.org/10.1145/3122955.3122961

1 Introduction
Writing formal specifications for programs is hard, but nevertheless
useful. Formally specifying a program can contribute to under-
standing, documentation, and regression testing using a tool like
QuickCheck [6].

This paper presents a tool called Speculate. Given a collection of
Haskell functions and values bound to monomorphic types, Specu-
late automatically conjectures a specification containing equations
and inequalities involving those functions. Both equations and in-
equalities may be conditional. In these respects we extend previous
work by other researchers on discovering unconditional equations
[8, 22]. As Speculate is based on testing, its results are speculative.

Speculate enumerates expressions by combining free variables,
functions and values provided by the user (§3). It evaluates these
expressions for automatically generated test cases to partition the
expressions into apparent equivalence classes. It conjectures equa-
tions between expressions in the same equivalence class. Then, it
conjectures conditional equations (⇒) and inequalities (≤) from
representatives of different equivalence classes (§4). Speculate uses

Haskell’17, September 7-8, 2017, Oxford, UK
© 2017 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings
of 10th ACM SIGPLAN International Haskell Symposium, September 7-8, 2017 , https:
//doi.org/10.1145/3122955.3122961. v4.4

lightweight equational reasoning to discard redundant equations
and to avoid needless testing. Speculate is implemented in Haskell.

Example 1.1. When provided with the integer values 0 and 1, the
functions id and abs, and the addition operator (+), Speculate first
discovers and prints the following apparent equations:

id x == x

x + 0 == x

abs (abs x) == abs x

x + y == y + x

abs (x + x) == abs x + abs x

abs (x + abs x) == x + abs x

abs (1 + abs x) == 1 + abs x

(x + y) + z == x + (y + z)

Similar equational laws are found by the existing tool QuickSpec
[8, 22]. But Speculate goes on to print the following apparent in-
equalities:

x <= abs x

0 <= abs x

x <= x + 1

x <= x + abs y

x <= abs (x + x)

x <= 1 + abs x

0 <= x + abs x

x + y <= x + abs y

abs (x + 1) <= 1 + abs x

Finally, it prints these apparent conditional laws:

x <= y ==> x <= abs y

abs x <= y ==> x <= y

abs x < y ==> x < y

x <= 0 ==> x <= abs y

abs x <= y ==> 0 <= y

abs x < y ==> 1 <= y

x == 1 ==> 1 == abs x

x < 0 ==> 1 <= abs x

y <= x ==> abs (x + abs y) == x + abs y

x <= 0 ==> x + abs x == 0

abs x <= y ==> abs (x + y) == x + y

abs y <= x ==> abs (x + y) == x + y

The total execution time for Speculate to generate all the above
laws is about 3 seconds. Speculate is implemented as a library, and
the total application-specific source code required for this example
is less than 10 lines. □

https://doi.org/10.1145/3122955.3122961
https://doi.org/10.1145/3122955.3122961
https://doi.org/10.1145/3122955.3122961

Haskell’17, September 7-8, 2017, Oxford, UK Rudy Matela Braquehais and Colin Runciman

1.1 Contributions
The main contributions of this paper are:

1. methods using automated black-box testing and equational
reasoning to discover apparent conditional equations and
inequalities between functional expressions;

2. the design of the Speculate tool, which implements these
methods in Haskell and for Haskell functions;

3. a selection of small case-studies, investigating the effective-
ness of Speculate.

1.2 Road-map
The paper is organized as follows: §2 defines expressions, expression
size and a complexity ordering on expressions; §3 describes how
to use Speculate; §4 describes how Speculate works internally;
§5 presents example applications and results; §6 discusses related
work; §7 draws conclusions and suggests future work.

2 Definitions
Expressions and their sizes All expressions formed by Speculate
have monomorphic types. Expressions, and their sizes, are:

Constants constant data-value and function symbols of size 1, e.g.,
• 0 :: Int,
• ’a’ :: Char,
• (+) :: Int -> Int -> Int

Variables variable symbols, also of size 1, such as
• x :: Int,
• f :: Int -> Int;

Applications type-correct applications of functional expressions to
one or more argument expressions, including partial applications,
such as

• id y :: Int of size 2,
• (1+) :: Int -> Int of size 2,
• x + (y + 0) :: Int of size 5.

The size of an application is the number of constant and variable
symbols it contains.

To avoid an explosive increase in the search-space, we do not in-
clude other forms of Haskell expression such as lambda expressions
or case expressions.

A complexity ordering on expressions When there is redun-
dancy between laws, Speculate has to decide which to keep and
which to discard. As a general rule, it keeps the simplest laws. It also
presents final sets of laws in order of increasing complexity. An
expression 𝑒1 is strictly simpler than another expression 𝑒2, if the
first of the following conditions to distinguish between them is:

1. 𝑒1 is smaller in size than 𝑒2,
e.g.: x + y < x + (y + z);

2. or, 𝑒1 has more distinct variables than 𝑒2,
e.g.: x + y < x + x;

3. or, 𝑒1 has more variable occurrences than 𝑒2,
e.g.: x + x < 1 + x;

4. or, 𝑒1 has fewer distinct constants than 𝑒2,
e.g.: 1 + 1 < 0 + 1;

5. or, 𝑒1 precedes 𝑒2 lexicographically,
e.g.: x + y < y + z.

A similar ordering is used in QuickSpec [8, 22].

import Test.Speculate

main :: IO ()

main = speculate args

{ constants =

[constant "+" ((+) :: Int -> Int -> Int)

, constant "id" (id :: Int -> Int)

, constant "abs" (abs :: Int -> Int)

, background

, constant "0" (0 :: Int)

, constant "1" (1 :: Int)

, constant "<=" ((<=) :: Int -> Int -> Bool)

, constant "<" ((<) :: Int -> Int -> Bool)

]

}

Figure 1. Program used to obtain the results in §1.

3 How Speculate is Used
Speculate is used as a library (by “import Test.Speculate”).
Unless they already exist, instances of the Listable typeclass [4]
are declared for needed user-defined datatypes (step 1). Constant
values and functions are gathered in an appropriately formulated
list, and passed to the speculate function (step 2).

Step 1: provide typeclass instances for used-defined types
Speculate needs to know how to enumerate values to test equality
between expressions. So, where necessary, we declare type-class
instances for user-defined types. Speculate provides instances for
most standard Haskell types and a facility to derive instances for
user-defined data types using Template Haskell [19]. Writing

deriveListable ''<Type>

is enough to create the necessary instances. See [4] for how to
define such instances manually, and why that is desirable in some
cases.

Then, to provide the instance information to Speculate, for two
types named Type1 and Type2, write the following:

instances = [ins "x" (undefined :: Type1)

, ins "i" (undefined :: Type2)]

Step 2: call the speculate function Constant values and func-
tions are gathered in a record of type Speculate.Args and passed
to the speculate function. Constants we want to know laws about
are included in an Args field, the constants list. Other constants
that appear in laws, but not as the primary subjects, are those occur-
ring in the constants list after the special constant background.

Example 1.1 (revisited). Figure 1 shows the program used to
obtain the results in §1. □

Speculate limits the size of expressions considered, and the num-
ber of test cases used. By default it:

• considers expressions up to size 5;
• considers inequalities between expressions up to size 4;
• considers conditions up to size 4;
• tests candidate laws for up to 500 value assignments.

The speculate function allows variations of these default settings
either by setting Args fields or in command line arguments.

Speculate: Discovering Conditional Equations and Inequalities
about Black-Box Functions by Reasoning from Test Results Haskell’17, September 7-8, 2017, Oxford, UK

4 How Speculate Works
In summary, Speculate works by enumerating expressions and eval-
uating test instances of them. In order for that to work effectively,
Speculate uses equational reasoning (§4.1). Speculate determines,
in the following order, apparent:

1. equations and equivalence classes of expressions (§4.2);
2. inequalities (§4.3);
3. conditional equations (§4.4).
To encapsulate values of different types, Speculate uses the

Data.Dynamic module [1] provided with GHC [23] and declares a
type to encode Haskell expressions.

4.1 Equational Reasoning based on Term Rewriting
Following QuickSpec [22], Speculate performs basic equational
reasoning based on unfailing Knuth-Bendix Completion [3, 13]. The
aims are to prune the search space avoiding needless testing, and to
filter redundant laws so that the output is more useful to the user.

Completion The Knuth-Bendix Completion procedure takes a set
of equations and produces a confluent term rewriting system [2, 13]:
a set of rewrite rules that can be used to simplify, or normalize,
expressions. To check if two expressions are equal, we can check
if their normal forms are the same. The completion procedure has
two problems: failure in the presence of unorientable equations and
possible non-termination. Speculate solves these problems similarly
to QuickSpec as detailed in the following paragraphs.

Unorientable equations To deal with unorientable equations, we
use the technique of unfailing completion [3] which allows unori-
entable equations to be kept in a separate set from rules. Checking
for equivalence using normalization is still sound, but incomplete
(the fact that two expressions are equivalent may be undetected).
We can use unorientable equations to improve the check for equiv-
alence between expressions 𝑒1 and 𝑒2: first normalize both 𝑒1 and
𝑒2; then take the equivalence closure using the set of unorientable
equations; finally, if one of the expressions in the closure of 𝑒1 is
equivalent to one of the expressions in the closure of 𝑒2 then they
are equivalent. To ensure termination, we impose a configurable
bound on the number of closure applications.

Non-termination To deal with non-termination of the completion
procedure, we impose a limit on the size of generated rules, discard-
ing any rules where the left-hand size is bigger than the maximum
expression size we are exploring.

4.2 Equations and Equivalence Classes of Expressions
Speculate finds equations in a similar way to QuickSpec 2 [22]. As
QuickSpec 2 has many features, like support for polymorphism, use
of external theorem provers for reasoning and several configuration
options, we chose to reimplement a core variant before extending it
with support for conditional equations and inequalities. Differences
to QuickSpec are highlighted in §6.

This section summarizes how Speculate finds equations.

State Speculate processes each expression in turn, transforming
a state. Speculate keeps track of:

• a theory (§4.1) based on equations discovered so far;
• a set of equivalence classes of all expressions considered so
far, and for each of them a smallest representative.

Table 1. Equivalence classes and equations after initialization by
considering all expressions of size 1.

equivalence classes

type repr. others
Int x —
Int 0 —
Int 1 —

Int -> Int id —
Int -> Int abs —

Int -> Int -> Int (+) —

equations

no equations

Table 2. Equivalence classes and equations after considering all
expressions of size 2.

equivalence classes

type repr. others
Int x id x
Int 0 abs 0
Int 1 abs 1
Int abs x —

Int -> Int id —
Int -> Int abs —
Int -> Int (x+) —
Int -> Int (0+) —
Int -> Int (1+) —

Int -> Int -> Int (+) —

equations

id x == x
abs 0 == 0
abs 1 == 1

Considering an expression Speculate considers an expression
𝐸 by trying to find an equivalence-class representative 𝑅 that is
equivalent to 𝐸:

• If expression 𝐸 is found equivalent to 𝑅 using equational
reasoning, then 𝐸 is discarded. The equations already tell us
that 𝐸 = 𝑅.

• If expression 𝐸 is found equivalent to 𝑅 using testing, then
the new equation 𝐸 = 𝑅 is inserted into the theory and 𝐸 is
inserted into 𝑅’s equivalence class.

Initialization The algorithm starts by considering single-symbol
expressions in the signature and one free variable for each type. After
this initialization, Speculate knows all equivalence classes between
expressions of size 1.

Example 1.1 (revisited). Table 1 shows the equivalence classes
after initialization for the example from §1 with 0, 1, id, abs and
(+) in the signature. As yet there are no equations. □

Generating and considering expressions Speculate generates
expressions in size order until the size limit is reached. Expressions
are constructed from type-correct applications of equivalence-class
representatives.

Example 1.1 (revisited). Using the size 1 representatives in Table
1, Speculate generates all candidate expressions of size 2: id x,
id 0, id 1, abs x, abs 0, abs 1, (x+), (0+), (1+). Then,
it considers all those expressions to arrive at the equations and
equivalence classes shown in Table 2.

Haskell’17, September 7-8, 2017, Oxford, UK Rudy Matela Braquehais and Colin Runciman

Table 3. Equivalence classes and equations after considering all
expressions of size 3.

equivalence classes

type repr. others
Int x id x, x + 0
Int 0 abs 0
Int 1 abs 1
Int abs x abs (abs x)
Int x + 1 1 + x
Int x + x —

Int->Int id —
...

equations

id x == x
abs 0 == 0
abs 1 == 1
x + 0 == x
0 + x == x
x + 1 == 1 + x

abs (abs x) == abs x

The process of considering expressions is repeated with expres-
sions of further sizes. Table 3 shows equivalence classes after con-
sidering all expressions of size 3. □

Multiple variables The algorithm described so far is only able to
discover laws involving one distinct variable of each type. Following
QuickSpec, dealing withmultiple variables is based on the following
observation and its contrapositive:

Multi ⇒ Single For a several-variables-per-type equation to be
true, its one-variable-per-type instance should be true as well, for
example:

∀𝑥 𝑦 𝑧.(𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧) ⇒ ∀𝑥 .(𝑥 + 𝑥) + 𝑥 = 𝑥 + (𝑥 + 𝑥)

¬ Single ⇒ ¬ Multi If a one-variable-per-type equation is false,
all its several-variable-per-type generalizations are false as well,
for example:

∃𝑥 .(𝑥 + 𝑥) + 𝑥 ≠ 𝑥 + (𝑥 + 𝑥) ⇒ ∃𝑥 𝑦 𝑧.(𝑥 + 𝑦) + 𝑧 ≠ 𝑥 + (𝑦 + 𝑧)
So, we only test a multi-variable equation when its single variable
instance is true.

Example 1.1 (revisited). When exploring expressions of size 5,
Speculate finds that

(x + x) + x == x + (x + x)

then proceeds to test all its generalizations to find that

(x + y) + z == x + (y + z) □

Finding commutativity After processing expressions of size
3 we might expect to have found commutativity of addition (+).
However, it is not found by the algorithm just described. To find
commutativity and other similar laws, we must also consider gen-
eralizations of a representative expression equated with itself. For
example, x + y == y + x is a generalization of x + x == x + x.

Expressions with several variables per type Speculate has to
find classes of expressions with several variables per type before
searching for inequalities (§4.3) and conditional equations (§4.4). For
each representative expression with at most one variable per type,
Speculate considers its possible generalizations up to 𝑛 variables,
merging expressions into the same equivalence class if either of
the following is true:

1. they normalize to the same expression using the theory;
2. they test equal.

Table 4. How the number of expressions and classes increases with
the size limit (for example 1.1).

max. 2 variables max. 3 variables
size limit #-exprs. #-classes #-exprs. #-classes

1 4 4 5 5
2 12 6 15 8
3 44 12 60 18
4 172 23 250 39
5 748 36 1180 68
6 3436 72 5840 153
7 16492 114 30285 287

4.3 Inequalities between Class Representatives
A naïve approach To find inequalities (< and ≤), a naïve ap-
proach enumerates all possible expressions and computes all ≤
relations. But it blows up as the size limit increases.

Example 1.1 (revisited). With a limit of 7 symbols, we would have
to check over a quarter of a billion pairs of expressions (16492 ×
16492, see Table 4). Using the default number of tests, 500, we would
perform over one hundred billion evaluations. Even if we waited
for that computation to complete, we would still have the problem
of filtering redundant laws.

A slightly less naïve approach If we instead insert True and <=
in the background signature, then generate equations, inequalities
will appear in the output as:

(LHS <= RHS) == True

In this way, no explicit support for inequalities is needed. For Quick-
Spec to discover the law (x + y <= abs x + abs y) == True
it is enough to set it to explore expressions up to size 9. In about
28s, QuickSpec will print this law along with 125 other laws (see
Table 9). The algorithm described in the rest of this section is faster,
discovering an equivalent law in about 1s among only 43 other
laws. See §6 for further comparison with QuickSpec.

A better approach The actual method used in Speculate is based
on two observations:

1. the number of non-functional equivalence classes is far
smaller than the number of expressions (Table 4);

2. we already have all equivalence classes and their smallest
representatives as a by-product of finding unconditional
equations.

So, Speculate finds inequalities in three steps:
1. list all pairs of class representatives;
2. test to select pairs that are related by ≤;
3. discard redundant inequalities.

Example 1.1 (revisited). Here are the inequalities found by list-
ing and selecting pairs related by ≤ before discarding redundant
inequalities:

1. 0 <= 1 4. 0 <= abs x 7. y <= y + 1

2. x <= abs x 5. 0 <= abs y 8. 0 <= 1 + 1

3. y <= abs y 6. x <= x + 1 9. 1 <= 1 + 1

Speculate: Discovering Conditional Equations and Inequalities
about Black-Box Functions by Reasoning from Test Results Haskell’17, September 7-8, 2017, Oxford, UK

Examples of redundancy include: inequalities 2 and 3 are equiva-
lent; inequalities 4 and 5 are equivalent; inequality 8 is implied by
inequalities 1 and 9.

Discarding redundant inequalities. To discard redundant in-
equalities, Speculate uses the complexity order defined in §2. This
is done in three steps, described in the following three paragraphs.

1. Instances Speculate discards more complex inequalities that are
instances of simpler inequalities.

Example 1.1 (revisited). The following 4 inequalities are dis-
carded

3. y <= abs y (implied by 2. x <= abs x)

5. 0 <= abs y (implied by 4. 0 <= abs x)

7. y <= y + 1 (implied by 6. x <= x + 1)

9. 1 <= 1 + 1 (implied by 6. x <= x + 1)

to arrive at

1. 0 <= 1 6. x <= x + 1

2. x <= abs x 8. 0 <= 1 + 1

4. 0 <= abs x

2. Consequences of transitivity Speculate discards consequences
of transitivity 𝑒1 ≤ 𝑒2 ∧ 𝑒2 ≤ 𝑒3 ⇒ 𝑒1 ≤ 𝑒3 when both antecedents
(𝑒1 ≤ 𝑒2 and 𝑒2 ≤ 𝑒3) are either simpler than the consequence
(𝑒1 ≤ 𝑒3), or instances of inequalities simpler than the consequence.

Example 1.1 (revisited). The inequality 0 <= 1 + 1 is discarded
as it is a consequence of 0 <= 1 and x <= x + 1.

3. Instances modulo equivalence closure For all pairs of inequalities
𝐼1 and 𝐼2 where 𝐼1 is simpler than 𝐼2, if any of the expressions in the
bounded equivalence closure (§4.1) of 𝐼2 is an instance of any of
the expressions in the bounded equivalence closure of 𝐼1, Speculate
discards 𝐼2.

4.4 Conditional Equations between Class Representatives
In this section, we detail how conditional equations are generated
based on the equational theory (§4.2), class representatives (§4.2)
and inequalities (§4.3) between boolean values.

A digraph of candidate conditions There is a connection be-
tween conditional laws and inequalities. Using the standard defini-
tion of Boolean <= we could define:

(==>) = (<=)

We already have information about <= from the previous step (§4.3).
We can build a digraph of boolean expressions ordered by implica-
tion as shown in Figure 2. We include False and True.

Discovering conditional laws For each pair of representatives 𝑒1
and 𝑒2 from different equivalence classes, we search for the weakest
conditions under which each of them holds. Instead of searching
through all possible conditions from class representatives we use
the digraph of conditions to prune the search space. We make a
fresh copy of the digraph and repeat the following until there are
no unmarked nodes:

1. pick an arbitrary unmarked node with condition 𝑐;
2. check 𝑐 ⇒ 𝑒1 = 𝑒2 by evaluating it for a set number of test

cases;

p

True

False

x < 0 1 < xabs x <= 0

x <= 0

1 <= abs x

1 <= x 1 < abs x

0 <= x

abs x <= 1

x <= 1

Figure 2. Conditions ordered by logical implication for Example
1.1 from §1 when considering expressions of at most one distinct
variable of each type.

False

p x < 0 abs x <= 0

x <= 0 abs x <= 1

x <= 1

⇒
p

x <= 0

x <= 1

abs x <= 1

⇓
x <= 0

Figure 3. Possible transformations performed on the ordering struc-
ture from Figure 2 when searching for the weakest condition for
x + abs x == 0 to hold.

3. if all tests pass then mark 𝑐 as visited and remove all nodes
from which 𝑐 can be reached as these are for stronger condi-
tions than 𝑐 .

4. if any test fails remove 𝑐 and all nodes reachable from it as
these are for weaker conditions than 𝑐 .

The remaining nodes are the weakest conditions for which 𝑒1 = 𝑒2.
The algorithm is sound modulo testing.

Example 1.1 (revisited). Suppose we are trying to find the weak-
est condition for which x + abs x == 0 holds. We may start
by considering 1 < x ==> x + abs x == 0 for which tests
fail: the node for 1 < x and all five nodes reachable from it are
removed from the graph, yielding the first graph in Figure 3. We
may then consider x <= 0, for which all tests succeed: we mark
it as visited and remove three other nodes from which it can be
reached, yielding the second graph in Figure 3. Fast-forwarding to
the end, we are left with a single node: the condition x <= 0 is
the weakest condition for x + abs x == 0 to hold.

Haskell’17, September 7-8, 2017, Oxford, UK Rudy Matela Braquehais and Colin Runciman

Filtering redundant conditional laws In brief, we discard a
conditional equation 𝑐1 ⇒ 𝑒1 = 𝑒2 if we also have a conditional
equation 𝑐0 ⇒ 𝑒1 = 𝑒2 and either 𝑐1 = 𝑐0 according to the theory
(§4.2), or 𝑐1 ⇒ 𝑐0 according to the implication digraph.

5 Example Applications and Results
In this section, we use Speculate:

• to find laws about simple functions on lists (§5.1);
• to find a complete implementation of insertion sort (§5.2);
• to find ordering properties of binary-tree functions (§5.3);
• to find ordering properties of digraph functions (§5.4);
• to find an almost complete axiomatisation for
regular-expression equivalence (§5.5).

Then, in §5.6 we give a summary of performance results for all
these applications.

We emphasize what is new compared with QuickSpec [8, 22]. So
we often omit details of reported unconditional equations where
QuickSpec produces similar results. In §6 we shall summarise dif-
ferences with QuickSpec, including some reasons why the tools
may give slightly different sets of unconditional equations.

Sometimes, for the sake of space, we discuss only a selection
of inequalities and conditional equations, but always note where
others are also generated.

5.1 Finding Properties of Basic Functions on Lists
Given the value [], the operators (:) and (++), and the functions
head and tail, all with Int as element type, Speculate first reports
the following equations:

xs ++ [] == xs

[] ++ xs == xs

(xs ++ ys) ++ zs == xs ++ (ys ++ zs)

(x:xs) ++ ys == x:(xs ++ ys)

head (x:xs) == x

tail (x:xs) == xs

Exactly the same laws are found by QuickSpec [8, 22].

Lexicographic ordering But Speculate goes on to print the fol-
lowing inequalities, assuming the default lexicographical ordering
Haskell derives for lists.

[] <= xs

xs <= xs ++ ys

xs <= head xs:tail xs

xs ++ ys <= xs ++ (ys ++ zs)

The law xs <= head xs:tail xs may seem strange, but it is
correct, even when xs = []. As (:) is non-strict:

[] <= head []:tail []

[] <= ⊥:⊥

Subsequence ordering Speculate allows the user to request in-
equalities based on orderings other than an Ord instance. For
example, if we provide as an Args field (§3)

instances =

[ordWith (isSubsequenceOf :: [Int]->[Int]->Bool)]

then Speculate uses isSubsequenceOf (from Data.List) as <= for
lists of Ints, and reports the following inequalities:

[] <= xs

xs <= x:xs

xs <= xs ++ ys

xs <= ys ++ xs

xs <= tail (xs ++ xs)

[x] <= x:xs

xs <= head xs:tail xs

x:xs <= x:(y:xs)

xs ++ ys <= xs ++ (ys ++ zs)

xs ++ ys <= xs ++ (zs ++ ys)

x:xs <= x:(xs ++ ys)

x:xs <= x:(ys ++ xs)

xs ++ ys <= xs ++ (x:ys)

[x,y] <= x:(y:xs)

xs ++ [x] <= xs ++ (x:ys)

Automatically checking given orderings Before starting to
compute conjectures, Speculate checks by testing that the requested
inequality ordering is reflexive and antisymmetric with respect to
(==), and transitive. If not, it refuses to go further. For example, if
we set (/=) as an ordering function for the type [Int], Speculate
reports:

Error: (<=) :: [Int] -> [Int] -> Bool

is not an ordering (not reflexive,

not antisymmetric, not transitive)

5.2 Sorting and Inserting: Deducing Their Implementation
With [] and (:) in the background signature, and functions insert
and sort from Data.List in the foreground, Speculate first reports
7 equations. QuickSpec produces a different but similar set of 7
equations. Both QuickSpec and Speculate find the base case of
insert and the recursive case of insertion sort:

insert x [] == [x]

sort (x:xs) == insert x (sort xs)

By default, Speculate hides laws with no variables. If we switch on
the option to reveal them, Speculate also reports the base case for
sort:

sort [] == []

If we also include <= and < for the element type in the back-
ground, Speculate reports the two conditional recursive cases

x <= y ==> insert x (y:xs) == x:(y:xs)

x < y ==> insert y (x:xs) == x:insert y xs

completing a full implementation of insertion sort synthesised from
results of black-box testing.

5.3 Binary search trees
In this section, we apply Speculate to functions on binary search
trees, with the following datatype.

data BT a = Null | Fork (BT a) a (BT a)

We declare two search trees equivalent if they contain the same
elements. Also, tree 𝑎 is less than or equal to tree 𝑏 if all elements
of tree 𝑎 are present in tree 𝑏.

Speculate: Discovering Conditional Equations and Inequalities
about Black-Box Functions by Reasoning from Test Results Haskell’17, September 7-8, 2017, Oxford, UK

instance (Eq a, Ord a) => Eq (BT a) where

(==) = (==) `on` toList

instance (Eq a, Ord a) => Ord (BT a) where

(<=) = isSubsequenceOf `on` toList

Equations If we apply Speculate to

insert :: Ord a => a -> BT a -> BT a

delete :: Ord a => a -> BT a -> BT a

isIn :: Ord a => a -> BT a -> Bool

it first reports 14 equations, including:

insert x (insert x t) == insert x t

delete x (delete x t) == delete x t

isIn x (insert x t) == True

isIn x (delete x t) == False

We find that insertion and deletion of an element x are idempotent,
and that they appropriately determine the outcomes of subsequent
membership tests.

Inequalities Speculate then reports 11 inequalities. The first three
are:

Null <= t

t <= insert x t

delete x t <= t

That is: the least tree is an empty tree; inserting elements makes
trees larger; deleting elements makes trees smaller.

Another group of five inequalities are about combinations of
some pair of the functions insert, delete and isIn:

delete x t <= delete x (insert y t)

insert x (delete y t) <= insert x t

delete x (insert y t) <= insert y (delete x t)

isIn x t ==> isIn x (insert y t)

isIn x (delete y t) ==> isIn x t

Conditional equation Speculate also reports this conditional
equation:

x /= y ==>

insert y (delete x t) == delete x (insert y t)

Applied to distinct elements, insert and delete commute.

5.4 Digraphs
In this section, we apply Speculate to a directed-graph library based
on the following adjacency-list datatype

data Digraph a = D [(a,[a])]

where values of the parametric type a are identified with nodes
of the digraph.

With elem and [] in the background, we apply Speculate to the
following functions:

empty :: Digraph a

addNode :: Ord a => a -> Digraph a -> Digraph a

addEdge :: Ord a => a -> a -> Digraph a -> Digraph a

preds :: Ord a => a -> Digraph a -> [a]

succs :: Ord a => a -> Digraph a -> [a]

isNode :: Ord a => a -> Digraph a -> Bool

isEdge :: Ord a => a -> a -> Digraph a -> Bool

isPath :: Ord a => a -> a -> Digraph a -> Bool

subgraph :: Ord a => [a] -> Digraph a -> Digraph a

The subgraph ns function extracts the subgraph of its argument
with nodes restricted to those listed in ns.

We define an ordering on digraphs as follows.

instance Ord a => Ord (Digraph a) where

g1 <= g2 = all (`elem` nodes g2) (nodes g1)

&& all (`elem` edges g2) (edges g1)

The ordering relationship holds if all nodes and edges of g1 are
also present in g2.

Equations Speculate reports 15 equations. For example, they
include these commutativity rules about addNode and subgraph:

addNode x (addNode y a) == addNode y (addNode x a)

subgraph xs (subgraph ys a) ==

subgraph ys (subgraph xs a)

Conditional Equations Of the two reported conditional equa-
tions, the most interesting is:

elem x xs ==> subgraph xs (addNode x a)

== addNode x (subgraph xs a)

Indeed, addNode x and subgraph xs commute when x is
an element of xs.

Inequalities Speculate reports a dozen inequalities. These five
are general laws about the relative extent of graphs.

empty <= a

a <= addNode x a

subgraph xs a <= a

a <= addEdge x y a

addNode x a <= addEdge x y a

Other inequalities involve empty or give simple rules about isNode,
isEdge and isPath. They are all correct, but we omit them to save
space.

5.5 Regular Expressions
In this section, we use Speculate to conjecture properties about
regular expressions. As we shall see, this is a muchmore demanding
example. We shall reach the limits of what we can do with Speculate.

We declare the following datatype RE a with a parametric type
a for the alphabet.
data RE a = Empty

| None

| Lit a

| Star (RE a)

| RE a :+ RE a

| RE a :. RE a

We declare the Listable instance
instance Listable a => Listable (RE a) where

tiers = cons0 Empty

\/ cons0 None `ofWeight` 1

\/ cons1 Lit \/ cons1 Star

\/ cons2 (:+) \/ cons2 (:.)

Haskell’17, September 7-8, 2017, Oxford, UK Rudy Matela Braquehais and Colin Runciman

Table 5. Regular Expression Axioms, the size of the largest side (LHS/RHS) and whether each is found by Speculate.

Basic / Common Axioms expr. size found
1. Identity (+) 𝐸 + ∅ ≡ 𝐸 3 yes
2. Idempotence (+) 𝐸 + 𝐸 ≡ 𝐸 3 yes
3. Commutativity (+) 𝐸 + 𝐹 ≡ 𝐹 + 𝐸 3 yes
4. Associativity (+) 𝐸 + (𝐹 +𝐺) ≡ (𝐸 + 𝐹) +𝐺 5 yes
5. Null (.) 𝐸∅ ≡ ∅𝐸 ≡ ∅ 3 yes
6. Identity (.) 𝐸𝜖 ≡ 𝜖𝐸 ≡ 𝐸 3 yes
7. Left distributivity 𝐸 (𝐹 +𝐺) ≡ 𝐸𝐹 + 𝐸𝐺 7 yes (after almost 3 days)
8. Right distributivity (𝐸 + 𝐹)𝐺 ≡ 𝐸𝐺 + 𝐹𝐺 7 yes (after almost 3 days)
9. Associativity (.) 𝐸 (𝐹𝐺) ≡ (𝐸𝐹)𝐺 5 yes

Salomaa (1966) Axioms [18]
S10. Left expansion (∗) 𝐸∗ ≡ 𝜖 + 𝐸∗𝐸 6 entailed by 𝐸∗𝐸 ≡ 𝐸𝐸∗ and K10
S11. Inner expansion (∗) 𝐸∗ ≡ (𝜖 + 𝐸)∗ 4 yes
S12. Inference (ewp) 𝐸 ≡ 𝐸𝐹 +𝐺 ⇒ 𝐸 ≡ 𝐺𝐹 ∗ if 𝑒𝑤𝑝 (𝐹) 10 no

Conway (1971) Axioms [9]
C10. Elimination (+∗) (𝐸 + 𝐹)∗ ≡ (𝐸∗𝐹)∗𝐸∗ 8 no
C11. Elimination (.∗) (𝐸𝐹)∗ ≡ 𝜖 + 𝐸 (𝐹𝐸)∗𝐹 10 no
C12. Idempotence (∗∗) (𝐸∗)∗ ≡ 𝐸∗ 3 yes
C13. Expansion (∗) 𝐸∗ ≡ (𝐸𝑛)∗𝐸<𝑛 (𝑛 > 0) — no

Kozen (1994) Axioms [14]
K10. Left expansion (∗) 𝜖 + 𝐸𝐸∗ ≡ 𝐸∗ 6 yes
K11. Right expansion (∗) 𝜖 + 𝐸∗𝐸 ≡ 𝐸∗ 6 entailed by 𝐸∗𝐸 ≡ 𝐸𝐸∗ and K10
K12. Left inequality 𝐹 + 𝐸𝐺 ≤ 𝐺 ⇒ 𝐸∗𝐹 ≤ 𝐺 7 degenerate case: 𝐹 +𝐺𝐺 ≤ 𝐺 ⇒ 𝐺 (𝐹 +𝐺) ≤ 𝐺 (3 days)
K13. Right inequality 𝐹 +𝐺𝐸 ≤ 𝐺 ⇒ 𝐹𝐸∗ ≤ 𝐺 7 degenerate case: 𝐹 +𝐺𝐺 ≤ 𝐺 ⇒ 𝐹𝐺∗ ≤ 𝐺 (3 days)

We declare a three-symbol alphabet, also with a Listable instance:

newtype Symbol = Symbol Char deriving (Eq, Ord, Show)

instance Listable Symbol where

tiers = cons0 (Symbol 'a')

\/ cons0 (Symbol 'b') `ofWeight` 1

\/ cons0 (Symbol 'c') `ofWeight` 2

The ofWeight applications make these constructions appear less
frequently in the test value enumeration.

Testing equivalence bymatching Wewish to define equivalence
of REs by equality of string-matching outcomes. To do so, we define
a function to translate the RE representation into the string format
used by an existing library 1 for matching.
translate :: (a -> Char) -> RE a -> String

The library exports (=˜) where s =˜ e if s matches e. Using
translate and =˜, we define:

match :: (a -> Char) -> [a] -> RE a -> Bool

match f xs r = map f xs =~ translate f r

So, for example:

> match id "aa" (Star (Lit 'a') :. Lit 'b')

False

> match id "aa" (Star (Lit 'a') :. Star (Lit 'b'))

True

1Text.Regex.TDFA from the regex-tdfa package.

With match defined, we can now implement approximate equiva-
lence and ordering of regular expressions based on a limited number
of membership tests:

testMatches :: (Listable a, Show a, Charable a, Ord a)

=> RE a -> [Bool]

testMatches = map (\e -> match toChar e r)

$ take 120 list

(/==/), (/<=/) :: RE Symbol -> RE Symbol -> Bool

r /==/ s = testMatches r == testMatches s

r /<=/ s =

and $ zipWith (<=) (testMatches r) (testMatches s)

Failing first attempts In our first attempts using this approach,
execution times were excessive. Even after caching up to ten mil-
lion textMatches results, a 30-minute run produced some wrong
equations due to insufficient testing! Our solution was down-sizing.

Starting small We reconfigure Speculate to produce equations
only up to size 3. After a couple of minutes, it prints:

1. r :+ r == r

2. Star (Star r) == Star r

3. r :+ None == r

4. r :. Empty == r

5. r :. None == None

6. Empty :. r == r

7. None :. r == None

8. r :+ s == s :+ r

Speculate: Discovering Conditional Equations and Inequalities
about Black-Box Functions by Reasoning from Test Results Haskell’17, September 7-8, 2017, Oxford, UK

All these are sensible and correct laws about regular expressions.
So now we declare canonicalRE as follows:
canonicalRE :: (Eq a, Ord a) => RE a -> Bool

canonicalRE (r :+ s) | r >= s = False -- by 1&8

canonicalRE (Star (Star r)) = False -- by 2

canonicalRE (r :+ None) = False -- by 3

canonicalRE (None :+ r) = False -- by 3&8

canonicalRE (r :. Empty) = False -- by 4

canonicalRE (r :. None) = False -- by 5

canonicalRE (Empty :. r) = False -- by 6

canonicalRE (None :. r) = False -- by 7

canonicalRE _ = True

and use it to refine our Listable instance by adding ‘suchThat‘
canonicalRE.

Equations of size 4 With the updated Listable instance, Specu-
late considers a greater range of candidate equations with the same
number of tests. Configured to produce equations up to size 4, it
prints the following new laws:

r :+ Star r == Star r

Star r :. r == r :. Star r

Star (r :+ Empty) == Star r

Empty :+ Star r == Star r

Now we repeat the process, further refining canonicalRE, and so
the Listable instance, on the basis of these conjectured laws.

Equations of size 5 and 6 We reduce the number of tests to 200
and again repeat the process for sizes 5 and 6. Speculate prints
seven equations of size 5 and nine of size 6 — including axioms 5, 9
and K10 from Table 5.

Inequalities and equations of size 7 Configured to explore equa-
tions and inequalities of size 7, Speculate finds the distributive laws
7 and 8 from Table 5. At last, Speculate finds all the common laws
from all three axiomatisations of regular expressions. It also finds
the following degenerate cases of Kozen’s conditional inequalities
— crucial ingredients in his complete axiomatisation:

r :+ (s :. s) <= s ==> r :. Star s <= s

r :+ (s :. s) <= s ==> s :. (r :+ s) <= s

Summary This case study was “a stretch”. We wanted to see how
far we could get with Speculate. With patience, we can get very
close to a complete axiom system, but with the current version of
Speculate it is just out of reach.

5.6 Performance Summary
Performance results are summarized in Table 6. Leaving aside the
regular-expression application, Speculates takes up to a few seconds
to consider expressions for up to size 5. Our tool and examples were
compiled using ghc -O2 (version 8.0.1) under Linux. The platform
was a PC with a 2.2Ghz 4-core processor and 8GB of RAM.

6 Related Work
QuickSpec The QuickSpec tool [8, 20–22] discovers equational
specifications automatically. Our technique is an extension that
allows production of conditional equations and inequalities. Quick-
Spec inspired us to start working on Speculate. Table 7 shows a

summary of differences between QuickSpec 1, QuickSpec 2 and
Speculate.

In principle QuickSpec can generate conditional equations, but
only with conditions restricted to applications of a set of declared
predicates. Consider the following example from [22]. When asked
to generate laws about zip and (++), both QuickSpec and Speculate
produce the following equations:

zip xs (xs ++ ys) == zip xs xs

zip (xs ++ ys) xs == zip xs xs

These laws are valid but they have conditional generalizations:

length xs == length ys ==>

zip xs (ys ++ zs) == zip xs ys

length xs == length ys ==>

zip (xs ++ zs) ys == zip xs ys

In Speculate, it is enough to have (==) and length among the
background constants to obtain the more general laws.

QuickSpec can only discover these more general laws given
quite explicit directions. By providing length in the background
and setting the following in QuickSpec’s predicates field

predicates =

[predicate (undefined :: Proxy "eqLen") eqLen]

where

eqLen :: [Int] -> [Int] -> Bool

eqLen xs ys = length xs == length ys

QuickSpec is able to find the more general laws in the form:

eqLen xs ys ==> zip xs (ys ++ zs) == zip xs ys

eqLen xs ys ==> zip (xs ++ zs) ys == zip xs ys

With regards to how laws are reported, we made a different
design choice to QuickSpec. QuickSpec reports laws as soon as
they are discovered, so the user sees progress as QuickSpec runs.
Speculate only reports laws after running the completion procedure,
so later laws can be used to discard earlier ones. Speculate also, by
default, does not report variable-free laws like sort [] == [].

QuickSpec has support for polymorphism: if an equation is dis-
covered for a polymorphic version of a function it can be used as a
pruning rule for all its monomorphic instances. Speculate does not
yet support that polymorphism; it requires monomorphic instances.

To double-check Speculate’s reimplementation of the basic equa-
tion generating machinery in QuickSpec: (1) we compared Specu-
late output with QuickSpec output to check if there was anymissing
equation, and (2) we compared performance of the two tools. This
comparison is summarized in Table 8. QuickSpec 2 is a little bit
faster than Speculate — early profiling indicates that we were not
as smart as the QuickSpec authors when implementing our term
rewriting and completion engine.

Table 9 presents needed size limits and times to generate some
inequalities and conditional laws for QuickSpec 2 and Speculate.
Results in tables 8 and 9 are based on QuickSpec 1 version 0.9.6
and on QuickSpec 2 development version from 11 May 2017 with
git commit hash 3c6e010. At the time of writing, developers are
working on improving support for conditional laws in QuickSpec.

Haskell’17, September 7-8, 2017, Oxford, UK Rudy Matela Braquehais and Colin Runciman

Table 6. Summary of Performance Results: figures are mean values across all runs; size limit = maximum number of expression size; #-tests
= maximum number of test-cases for any property; time = rounded elapsed time and space = peak memory residency (both from GNU time).

configured size limit for maximum resources number of reported
Example eqs. ineqs. cond. eqs. #-vars #-tests time space eqs. ineqs. cond. eqs.

(+) and abs (§1) 5 4 4 2 500 3s 7MB 23 17 4
5 5 5 2 500 25s 7MB 23 44 4
6 5 5 3 500 2m 37s 8MB 43 44 24

List (§5.1) 5 4 – 3 500 < 1s 7MB 6 6 –
7 6 – 3 500 31s 9MB 7 30 –

Insert Sort (§5.2) 5 – 3 2 500 < 1s 7MB 11 – 2
6 – 5 3 500 5s 8MB 16 – 8
7 – 6 3 500 1m 27s 12MB 12 – 12

Binary Trees (§5.3) 5 4 4 2 500 < 1s 7MB 16 4 1
6 5 5 3 500 14s 7MB 16 22 5

Digraphs (§5.4) 5 4 4 2 500 1s 8MB 15 12 2
6 5 5 3 500 1m 52s 10MB 27 30 34
6 5 5 3 6000 2m 22s 23MB 25 30 17

Regexes (§5.5) 3 – – – 500 1m 30s < 6GB 8 – –
4 – – – 400 9m 11s < 6GB 12 – –
5 – – – 200 17m 13s < 6GB 19 – –
6 – – – 200 1h 26m 32s 6GB 28 – –
7 7 – 2 200 2d 22h 30m 10s 6GB 130 699 –

Table 7. Speculate contrasted with QuickSpec 1 and QuickSpec 2.

QuickSpec 1 QuickSpec 2 Speculate

Testing Strategy random random enumerative
(QuickCheck) (QuickCheck) (LeanCheck)

Direct discovery of equations yes yes yes
of inequalities no no yes
of conditional equations no restricted yes

Reported equations as discovered as discovered after completion
Constant laws (laws with no variables) yes yes hidden by default

How search is bounded depth-bounded size-bounded size-bounded

Explicit treatment of polymorphic functions no yes no
Support for pruning by external theorem provers no yes no

Performance (see Table 8) slowest fastest median

CoCo The CoCo (Concurrency Commentator) tool [24] generates
specifications for concurrent Haskell programs containing laws
about refinement or equivalence of side effects. Drawing upon the
techniques used in QuickSpec and Speculate, CoCo also works
by testing, and can be seen as QuickSpec/Speculate to discover
equivalences and refinements between concurrent expressions.

HipSpec QuickSpec and Speculate can only provide apparent laws
as their results are based on testing. The HipSpec system [7] auto-
matically derives and proves properties about functional programs.
HipSpec first uses QuickSpec to discover conjectures to prove. Then,
using inductive theorem proving, it automatically generates a set
of equational theorems about recursive functions. Those theorems

can be used as a background theory for proving properties about a
program.

Hipster The Hipster system [12] integrates QuickSpec with the
proof assistant Isabelle/HOL. Hipster speeds up and facilitates the
development of new theories in Isabelle/HOL by using HipSpec to
discover basic lemmas automatically.

Daikon The Daikon tool [11] automatically discovers apparent in-
variants in imperative programs. Those invariants include: precon-
ditions and postconditions of statements, equational relationships
between variables at a given program point and equations between
functions from a library. Unlike QuickSpec and Speculate, Daikon
is aimed at imperative programs, written in languages such as: C,

Speculate: Discovering Conditional Equations and Inequalities
about Black-Box Functions by Reasoning from Test Results Haskell’17, September 7-8, 2017, Oxford, UK

Table 8. Timings and equation counts when generating unconditional equations using Speculate, QuickSpec 1 and QuickSpec 2. In QS1,
expressions are primarily explored up to a certain depth [8], so, for a fair comparison, we have introduced a depth limit in QS2 and Speculate.

size depth max. Runtime in seconds #-reported equations
Example limit limit #-tests QS1 QS2 Speculate QS1 QS2 Speculate

(+) and abs (§1) 6 4 500 4s < 1s < 1s 10 13 9
7 4 500 7s < 1s 2s 14 15 14

0, 1, +, × (Int) 7 4 500 95s 3s 6s 9 13 9

List (§5.1) 7 4 500 52s < 1s < 1s 28 7 7
8 4 500 10m 31s < 1s < 1s 40 7 7

Table 9. Needed size limits and times to generate some inequalities and conditional laws for QuickSpec 2 and Speculate. Speculate is able to
find some laws much faster as they appear when exploring a smaller size.

Needed Needed # reported
size limit max #-tests Runtime laws

Example Target Law QS2 Spl. QS2 Spl. QS2 Spl. QS2 Spl.

(+) and abs (§1) x <= abs x 4 2 500 500 < 1s < 1s 12 3
x <= abs (x + x) 6 4 500 500 < 1s < 1s 36 23
x + y <= x + abs y 8 4 500 500 8s < 1s 82 23
x + y <= abs x + abs y 9 5 500 500 34s 1s 125 43
(or x + y <= abs x + y)

Binary Trees (§5.3) isIn x t ==> isIn x (insert y t) 9 5 2000 500 37s 1s 34 39

Regexes (§5.5) 𝐹 +𝐺𝐸 ≤ 𝐺 ⇒ 𝐸∗𝐹 ≤ 𝐺 14 7 (o p e n r e s e a r c h p r o b l e m)

C++, Java and Perl. Daikon works by testing potential invariants
against observed runtime values.

FitSpec The FitSpec tool [4] provides automated assistance in the
task of refining specifications. To do so, it tests mutant variations
of functions under test against a given property set, recording
any surviving mutants that pass all tests. The user is prompted to
strengthen the property set or to remove redundant properties. It
has been applied to QuickSpec results and could also be applied to
Speculate results.

Property-based testing Since the introduction of QuickCheck
[6], several other property-based testing libraries and techniques
have been developed, such as SmallCheck, Lazy SmallCheck [16, 17]
and Feat [10]. These tools automatically test properties describing
Haskell functions meaning that Speculate results can be used as
properties for regression tests.

7 Conclusions and Future Work
Conclusions In summary, we have presented a tool that, given a
collection of Haskell functions, conjectures a specification involving
apparent inequalities and conditional equations. This specification
can contribute to understanding, documentation and properties for
regression tests. As set out in §3 and §4, Speculate enumerates, tests
expressions and reasons from test results to produce its conjectures.
We have demonstrated in §5 Speculate’s applicability to a range of
small examples, and we have briefly compared in §6 some of the
results obtained with related results from other tools.

Value of reported laws The conjectured equations and inequalities
reported by Speculate are surprisingly accurate in practice, despite

their inherent uncertainty in principle. These conjectures provide
helpful insights into the behaviour of functions. For the sorting
example in §5.2, we were even able to synthesise a complete im-
plementation. When Speculate finds an apparent but incorrect law,
increasing the number of tests per law is a simple and effective
solution (§5.4). The special treatment of inequalities and condi-
tional equations makes possible the generation of laws previously
unreachable by a tool such as QuickSpec [8, 22].

Ease of use Arguably, a tool is easier to use if it requires less work
from the programmer. As we illustrated in §3, writing a minimal
program to apply Speculate takes only a few lines of code. The spec-
ulate function parses command-line arguments to allow easy con-
figuration of test parameters. If only standard Haskell datatypes are
involved, no extra Listable instances are needed. If user-defined
data types can be freely enumerated without a constraining data
invariant, instances can be automatically derived.

However, often we do need to restrict enumeration by a data
invariant, and a crude application of a filtering predicate may be
too costly, with huge numbers of discarded values. Effective use of
Speculate may require careful programming of custom Listable
instances, even if suitable definitions can be very concise. The
Speculate library does not currently incorporate methods to derive
enumerators of values satisfying given preconditions [5, 15].

Future Work We note a few avenues for further investigation
that could lead to improved versions of Speculate or similar tools.

Improve performance when generating inequalities The algorithm
to generate equations is partly based on the observation that, for
an equation to be true, its one-variable-per-type instance must be

Haskell’17, September 7-8, 2017, Oxford, UK Rudy Matela Braquehais and Colin Runciman

true. So, Speculate initially considers one-variable-per-type equa-
tions, generalizing them to their several-variable versions only
if they are found true (§4.2). The same applies to inequalities:
for x + y <= x + abs y to be true x + x <= x + abs x must be
true. Speculate does not yet exploit this and does some unnecessary
testing.

Parallelism As a way to improve performance, particularly when
dealing with costly test functions such as in the regular expressions
example (§5.5), we could parallelise parts of Speculate. For example,
divide the testing of laws among multiple processors.

Automated generation of efficient Listable instances Right now, to
use Speculate, Listable instances have to be explicitly declared.
Speculate could take the constructors of a type in its constants
list (§3) and automatically construct a generator for values of that
type. This generator could be improved as new equations are dis-
covered. If for a given type constructor Cons, we discover that
Cons x y == Cons y x, in further tests, we would only apply
Cons to ordered x and y. This is what we did manually in our
regular-expressions example (§5.5).

Improve filtering of redundant inequalities and conditions Although
Speculate already filters out a lot of redundant inequalities and
conditional equations, there is still room for improvement. Recall
these laws from Example 1.1:

1. x == 1 ==> 1 == abs x

2. abs x <= y ==> abs (x + y) == x + y

3. abs y <= x ==> abs (x + y) == x + y

By interpreting the condition as a variable assignment, the first law
is an instance of 1 == abs 1. The other two laws are equivalent
by the commutativity of addition (+).

Special treatment of conjunctions and disjunctions Although not
explored much in the examples in this paper, conjunctions (&&) and
disjunctions (||) can often occur as conditions of properties [17].
In the current version of Speculate, logical operators are treated as
regular functions. In future versions we could treat them specially,
exploiting their properties of commutativity and associativity to
reduce the search space.

Checking that given equivalences are congruences In §5.1, we men-
tion that before running any tests, Speculate checks whether given
equality (==) functions are equivalences (reflexive, symmetric and
transitive). Speculate also assumes, but does not check, that given
== functions are congruences: in any expression 𝑒 , suppose we
replace a subexpression 𝑠 by 𝑠′, where 𝑠 ≡ 𝑠′, to obtain 𝑒′ as the
whole: then we require 𝑒 ≡ 𝑒′. Future versions of Speculate should
check for congruence.

Detecting and using equivalences and orderings In the current ver-
sion of Speculate, the user has to say which equivalence (==) and
ordering (<=) functions to use. Or, in the case of standard types, the
user has to explicit provide functions to override the standard ones.
The algorithm to compute equations can work with any function
that is a congruent equivalence. Similarly, the algorithm to compute
inequalities, can work with any function that is an ordering. Spec-
ulate could detect any given functions that have these properties
and autonomously search for laws based on them.

Availability
Speculate is freely available with a BSD3-style license from:

• https://hackage.haskell.org/package/speculate
• https://github.com/rudymatela/speculate

This paper describes Speculate as of version 0.2.5.

Acknowledgements
We thank Nick Smallbone for hospitality and many interesting
discussions about QuickSpec; Maximilian Algehed for helping with
running one of QuickSpec’s examples; Ivaylo Hristakiev for dis-
covering a bug in our term unification algorithm; and anonymous
reviwers for their comments on earlier drafts.

Rudy Matela Braquehais is supported by CAPES, Ministry of
Education of Brazil (Grant BEX 9980-13-0).

References
[1] 2017. Haskell’s Data.Dynamic library documentation. https://hackage.haskell.

org/package/base/docs/Data-Dynamic.html.
[2] Franz Baader and Tobias Nipkow. 1999. Term Rewriting and All That. Cambridge

University Press.
[3] Leo Bachmair, Nachum Dershowitz, and David A. Plaisted. 1989. Completion

Without Failure. In Resolution Of Equations In Algebraic Structures. Vol. 2. Aca-
demic Press, Boston, 1–30.

[4] Rudy Matela Braquehais and Colin Runciman. 2016. FitSpec: refining property
sets for functional testing. In Haskell’16. ACM, 1–12.

[5] Lukas Bulwahn. 2012. Smart Testing of Functional Programs in Isabelle. In LPAR
2012 (LNCS 7180). Springer, 153–167.

[6] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In ICFP’00. ACM, 268–279.

[7] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone. 2012. Hip-
Spec: Automating inductive proofs of program properties. In Workshop on Auto-
mated Theory eXploration: ATX 2012.

[8] Koen Claessen, Nicholas Smallbone, and John Hughes. 2010. QuickSpec: Guessing
Formal Specifications Using Testing. In TAP 2010. Springer, 6–21.

[9] John Horton Conway. 1971. Regular algebra and finite machines. Chapman and
Hall.

[10] Jonas Duregård, Patrik Jansson, and Meng Wang. 2012. Feat: functional enumer-
ation of algebraic types. In Haskell’12. ACM, 61–72.

[11] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen Mccamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2006. The Daikon system for
dynamic detection of likely invariants. Science of Computer Programming 69, 1
(2006), 35–45.

[12] Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. 2014. Hip-
ster: Integrating Theory Exploration in a Proof Assistant. Springer.

[13] Donald Knuth and Peter Bendix. 1983. Simple Word Problems in Universal
Algebras. In Automation of Reasoning. Springer, 342–376.

[14] Dexter Kozen. 1994. A completeness theorem for Kleene algebras and the algebra
of regular events. Information and Computation 110, 2 (1994), 366–390.

[15] Fredrik Lindblad. 2007. Property Directed Generation of First-Order Test Data.
In TFP’07. 105–123.

[16] Jason S. Reich, Matthew Naylor, and Colin Runciman. 2013. Advances in Lazy
SmallCheck. In IFL’13. Springer, 53–70.

[17] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. 2008. SmallCheck and
Lazy SmallCheck: Automatic Exhaustive Testing for Small Values. In Haskell’08.
ACM, 37–48.

[18] Arto Salomaa. 1966. Two complete axiom systems for the algebra of regular
events. Journal of the ACM (JACM) 13, 1 (1966), 158–169.

[19] Tim Sheard and Simon Peyton Jones. 2002. Template Meta-programming for
Haskell. In Haskell’02. ACM, 1–16.

[20] Nicholas Smallbone. 2011. Property-based testing for functional programs. Licenti-
ate Thesis. Chalmers University of Technology.

[21] Nicholas Smallbone. 2013. Lightweight verification of functional programs. Ph. D.
Dissertation. Chalmers University of Technology.

[22] Nicholas Smallbone, Moa Johansson, Koen Claessen, and Maximilian Algehed.
2017. Quick specifications for the busy programmer. (2017). http://www.cse.
chalmers.se/~nicsma/papers/quickspec2.pdf Accepted for publication in JFP,
Cambridge University Press.

[23] The GHC Team. 1992–2017. The Glasgow Haskell Compiler. https://www.haskell.
org/ghc/.

[24] Michael Walker and Colin Runciman. 2017. Cheap Remarks about Concurrent
Programs. (2017). Accepted for presentation at TFP’17.

https://hackage.haskell.org/package/speculate
https://github.com/rudymatela/speculate
https://hackage.haskell.org/package/base/docs/Data-Dynamic.html
https://hackage.haskell.org/package/base/docs/Data-Dynamic.html
http://www.cse.chalmers.se/~nicsma/papers/quickspec2.pdf
http://www.cse.chalmers.se/~nicsma/papers/quickspec2.pdf
https://www.haskell.org/ghc/
https://www.haskell.org/ghc/

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Road-map

	2 Definitions
	3 How Speculate is Used
	4 How Speculate Works
	4.1 Equational Reasoning based on Term Rewriting
	4.2 Equations and Equivalence Classes of Expressions
	4.3 Inequalities between Class Representatives
	4.4 Conditional Equations between Class Representatives

	5 Example Applications and Results
	5.1 Finding Properties of Basic Functions on Lists
	5.2 Sorting and Inserting: Deducing Their Implementation
	5.3 Binary search trees
	5.4 Digraphs
	5.5 Regular Expressions
	5.6 Performance Summary

	6 Related Work
	7 Conclusions and Future Work
	References

